3 Sample Exam Questions

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

1. Consider the equation $x^2 + xy + y^2 = 1$, graphed below.

- (a) Find an expression for $\frac{dy}{dx}$ in terms of x and y.
- (b) Find all points where the tangent line is horizontal.
- (c) Find all points where the tangent line is parallel to the line y=-x.
- 2. Let $f(x) = 7\sin(x + \pi) + \cos 2x$.
 - (a) Compute f'(x), f''(x), $f^{(3)}(x)$, and $f^{(4)}(x)$.
 - (b) Compute $f^{(13)}(0)$.
- 3. Assume that f(x) and g(x) are differentiable functions that we know very little about. In fact, assume that all we know of these functions is the following table of data:

x	f(x)	$g\left(x\right)$	f'(x)	g'(x)
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	0

- (a) Let $h(x) = g(x) \sin x$. What is h'(0)?
- (b) Let $j(x) = [f(x) + x^2]^3$. What is j'(1)?

CHAPTER 3 DIFFERENTIATION RULES

- 4. Let u be a function that is always positive, and suppose that u'(x) < 0 for all real numbers x.
 - (a) Let $f(x) = [u(x)]^2$. For what values of x will f be increasing?
 - (b) Let g(x) = u(u(x)). For what values of x will g be increasing?
- 5. Compute derivatives of the following functions.
 - (a) $f(x) = e^{2\pi x}$
 - $\text{(b) } g\left(x\right) = x^{2\pi e}$
 - (c) $h(x) = (e\pi)^{2x}$
 - (d) $l(x) = \pi^{(e^{2x})}$
- **6.** Let $f(x) = -x^3 2x^2 + x + 1$ and $g(x) = \ln(x+1) + 1$.
 - (a) Find the equation of the line tangent to f at x = 0.
 - (b) Show that g has the same tangent line as f at x = 0.
 - (c) Does this tangent line give a better approximation of f(x) or g(x) at x = 1? Give reasons for your answer.
- *7. Consider the function $h(x) = (1 + \sin \pi x)^{g(x)}$. Suppose g(1) = 2 and g'(1) = -1. Find h'(1).
- 8. (a) Find the point on the curve $y = \ln(x^2)$ where the slope of the tangent line is $\frac{2}{3}$.
 - (b) Find the x-intercept of the line tangent to the curve at that point.
- 9. The voltage across a resistor R is given by $V(t) = e^{-0.3t} \sin t$. A graph of V is shown below.

- (a) How fast is the voltage changing after 2 seconds?
- (b) Would you be better off using the linear approximation at x=a to estimate V(b), or using the linear approximation at x=b to estimate V(a)? Justify your answer.
- 10. Let $f(x) = \ln(1+x^2)$.
 - (a) What is $\lim_{x\to\infty} f(x)$?
 - (b) What is $\lim_{x\to\infty} f'(x)$?
 - (c) Using parts (a) and (b), explain the behavior of the function as x gets large.
- 11. Consider the curve $x = e^{t-5} \cos t$, $y = e^{t-5} \sin t$, $0 \le t \le 2\pi$.
 - (a) Find the values of t where the line tangent to the curve is vertical.
 - (b) Find the values of t where the slope of the line tangent to the curve is -1.